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1. Introduction

A multivariate normal linear model in its canonical form consists of a
data matrix X = (X,,...,Xk):p x k with independent columns X. - N (til),

1 ~P
i 1,...,k, and an independent p x p Wishart matrix S - W (n,Z). Here' p

.'s and I are unknown. This kind of data arises, for example, if we are1

sampling from k different multivariate normal populations N (p., ),

i = 1,...,k, with a sample of size n. from the ith population. If X. and1 1

S. denote respectively the sample mean vector and the sample sum of
1

squares and products matrix, we may write X. = iX. i = 1,...,k, and

Sk to get the above setup where n =n, nk -kand

Ci = fn i , i = 1,...,k. Under this formulation we consider the problems

of estimating 1, the common variance-covariance matrix, J_' , the common

precision matrix, and III, the common generalized variance. We assume that

n I p + 1.

From the classical point of view without any decision-theoretic

consideration, one would simply ignore X (since C 'a are unknown) and1

propose multiples of S, S-' and ISI which are unbiased for E, I-I and IlI

respectively. Even from a decision-theoretic point of view with the

availability of a suitable loss function for each of these problems, one would

normally be tempted to use very simple estimates like best multiples of S, S-'

and ISI especially for invaiant loss functions. To illustrate this point

clearly, let us first write down the various loss functions which are commonly

used in this context. We denote by L(,J) the loss is estimating E by j. A

similar notation is used for L(-',I-)*and L(IjIiEI).

(1.1) L (il) = tr(i - W

L (,) = tr( C' - )2

22
L (E-,E) =tr - *nI. z-'i - p

(, IO) i(. - )qij, qij b 0 (weights)
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(1.2) LI(T'-') tr(-I - E-')'

L2(f:- 1,J-') = tr(fj-'I - 1)2

L = tr - inIf:'I - p3

L(-,E'Q) = tr(- - -,) 2Q, Q arbitrary p.d. matrix

(1.3) L (Il , I l) = (IEI _ IZI)2

L(fl, 1I1) = (II/II - nij/If) I1

L (Ifl, IZl) = (Ifl/lIl - 1 f2

L (Ifl, Il) = (IZI/Ifl) - n(II/II) -1

The loss function L,(') in (1.1) and (1.2) is a generalization of squared error

loss and is noninvariant. The loss function L 4 (-) in (1.1), due to Perlman

(1972), is also noninvariant and is a generalization of squared error loss with

constant weights qij's. The loss functions L 2 (') and L3 () in (1.1) and (1.2)

are invariant, L,(') in (1.1) being the entropy loss introduced in James and

Stein (1961) while L 2 (') in (1.1) is proposed in Selliah (1964). L,(') in (1.2) is

introduced and justified in Sinha and Ghosh (1986). All the four loss

functions in (1.2) are completely analogous to those in (1.1). L,(') in (1.2)

appears in Haff (1979a). The loss functions in (1.3) are all invariant, L, ()

and L 2 (') being equivalent as far as risk is concerned. We mention in passing

that the loss functions L,(-), L,(') and L 3 (') in (1.1) and (1.2) can be used

interchangeably. For example, L 2 (- ,1 - 1) in (1.2) can also be used as a

genuine loss function for I because it satisfies L 2 (a-,) • 0 and '= 0' if and

only if (-)-' = 1. [Loss functions developed by Efrori and Morris (1976)

from an empirical Bayes argument are not considered here.]

When a loss function is invariant, an affine (translation and multiplication

by nonsingular matrices) equivariant estimator turns out to be of the form cS

for 1, dS-' for I-' and elsi for IZl where c, d and e are constants. These
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estimators ignore X and, due to the invariant nature of the loss function, have

constant risks, independent of 1. It is then possible to find the best choice

of these constants, resulting in the best affine equivariant estimators. For

example, it is easy to show that (assuming that n , p + 4)

(1.4) c,= 1 ,c 3  , I d = (n-p)(n-p-3)/(n-l), d,= n-p-l,

e = e = e = (n-p)!/n!, e = (n-p-4)!/(n-4)!,

e = (n-p-2)!/(n-2)!

where c2 is the best choice of the constant c for the loss function L,(') in

(1.1) and so on.

The question then arises whether one should be content with these

simple estimators or look for improved estimators. For a decision-theorist, it

is, of course, essential to know if these best multiples of S, S-' and I Si are

admissible for the respective problems. Unfortunately, it turns out none of

these estimators is admissible and, in fact, there are many ways to improve

over them. The improved estimators, however, lack simplicity and, unlike for

the above simple estimators, their frequency properties are extremely difficult

to study analytically. Numerical computations (Lin and Perlman (1985), Dey

and Srinivasan (1984), Sinha and Ghosh (1986)) show that risk improvements

are marginal in many cases but substantial in some cases.

The various methods leading to improved estimators of F, -' and IZ are

reviewed in this paper. Broadly speaking, there are three methods: (i)

minimax estimators due to James and Stein (1961) and recently modified and

improved by Dey and Srinivasan (1985); (ii) empirical Bayes estimators

developed by Haff (1977, 1979a, 1979b, 1980); and (iii) Stein's testimators (Stein

(1964)) as developed by Shorrock and Zidek (1976), Sinha (1976), and Sinha

and Ghosh (1986).

Some open problems are mentioned in the concluding section.
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2. Minimax Estimators.

To improve over the best affine equivariant estimators, James and Stein

(1961) considered a somewhat smaller group of translation and multiplication

by p x p lower triangular matrices with positive diagonal elements. The

component translation of this group eliminates X and the estimators which are

equivariant under the triangular group G+ of the above type turn out to be

of the form KAK' where K t G+ satisfies S = KK' and a is a diagonal matrix.T
For an invariant loss function, the risk of such an estimator is independent

of I and depends only on the diagonal elements of a (apart from n and p).

To compute the risk, one has to use the simple fact that if S - Wp(n,I) and S

- KK' with K t +, then 1. - X 2  K. . N(0,1), j N i, and all variables
11 n Ji

in K are independent (see Kshirsagar (1978)). It is then possible to find the

best choice of the diagonal elements of &, thus resulting in the best

equivariant estimator which, if different from the best affine equivariant

estimator, is certainly an improvement over it. Moreover, because of the

solvability of the group G+T (Kiefer (1957)), the resultant estimator with

constant risk is automatically minimax. This procedure can be followed to get

improved estimators for the invariant loss functions L 2 (') and L 3 (') in (1.1)

and (1.2). For example, for the loss function L 2 (') in (1.1), the minimax

estimator dominating the best affine equivariant estimator c 2 S is given by

KAoK' where the diagonal elements 6 ,.... 6 p of A are the solutions of the

equations

(2.1) (n+p-1)(n+p+l)6 + (n+p-3)6 +...+ (n-p+l),d = n + p - 11 a p

(n4p-3)6 + (n+p-3)(n+p-l)2 +...+ (n-p+l)6 = n+p-31 .p

(n-p+l)6 I+ (n-p+l)6 2+...+(n-p+l)(n-p+3)d = n-p+l2

Similarly, the minimax estimator dominating the best affine equivariant

estimator c 3 S for the loss function L 3 (-) in (1.1) is given by KAK' with the

ith diagonal element 6 i of A, being equal to (n+p-2i+l)-',i = 1,...,p. Analogous

results can be obtained for the loss functions L 2 (') in L 3 (-) in (1.2).



-6-

Remark 2.1. The above procedure does not work for the loss functions in

(1.3) relevant for estimating the generalized variance because IKAK'I = elSI

for some e, which is also affine equivariant. A method for improving over

elSI is discussed in Section 4.

Remark 2.2. A drawback of the minimax estimators presented above is their

dependence on the coordinate system. Although this can be overcome by

averaging the minimax estimator over the group of p x p orthogonal matrices

with respect to Haar measure, the resultant estimator does not have a simple

form for p a 3 (see Takemura (1984)). Another drawback is that the amount

of risk improvement is very marginal. Stein (1975, 1977a, 1977b) instead

considered the class oi orthogonally invariant estimators of the form 1 = R

*(L) R' where S = RLR' with R the matrix of normalized eigen vectors (RR'

R'P = I), I, = diag( ,...,t ) is the diagonal matrix of eigen values of S
I p

with t a I ... & a , and *L) *(L) .* (L)). For estimating E under

the ,ri y loss fn,t ion Lo - in (1.1), Stein (1975) proposed using

S
(2.2) 1. t p , 2- " 1/(I. - I J i = 1...,p.

However, the risk funCjtion of the resultant estimator is very complicated and

it has not hoen thvoretically determined that this estimator dominates c 3 S, the

best affine equivariarit estimator for this loss, although Monte Carlo simulation

results of Lin and Perlin (1985) indicate this to be the case. Recently, for

the loss function [, 3 (') in (1.1), Dey and Srinivasan (1985), by successfully

applying Stein's technique, obtained orthogonally invariant minimax estimators

which are improvements over cS as well as over the minimax estimator

presented before for p - 3. The improved estimators which are obtained by

solving a certain differential inequality have very simple forms. Also the

percentage risk improvements over the risk of c 3 S and over the minimax risk

are both significant, except for very large n (Dey and irivivasan (1984)). We

may mention that Haff's (1982) modification of Stein's estimator . also performs

quite well. Dey and Srinivasan's (1985) improved estimator over c 3 S is given

by R *'(L)R' and that over the minimax estimator Ka, K' by R * (L)R'. The

components of * (L) are obtained as
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(2.3) *0(L) i/n - (S. log ) (u)/(b + u), i = 1,...

where u = log 21, b 0 144(p - 2)2/(25n 2 ) is a constant, and T a(u) is a

function satisfying (i) 0 z T (u) z 2(p - 2)/n*, n* = 5n2/6; (ii) r (u)

monotone nondecreasing in u and E[ro(u)] L -. On the other hand, the

components of W (L) are given by

(2.4) i (L) = a.6i - (.. log i)7 (u)/(b + u), i = 1,...,p,

where b 1 14 4(p - 2) 2/{25(n+p-1) 2) is a constant, and T (u) is a function

satisfying (i) 0 r (u) z 12 (p - 2)/(5(n+p-l)2 ), (ii) -(u) monotone non-

decreasing in u and E[T(u)] L .. Incidentally, another very simple

estimator R * 2(L)R' with *2,L) = i ., i = l,...,p, is also minimax and is1 1 1

an improvement over both c3 S and KA1I' for the entropy loss function L 3(') in

(1.1) (Stein (1982), Dey and Srivivasan (1985)).

3. Empirical Bayes Estimators

A unified approach to constructing estimators of I and I- substantially

better (in terms of amount of risk improvement) than the best affine

equivariant estimators for invariant loss functions in (1.1) and (1.2) and

otherwise better than the unbiased estimators has been successfully developed

in a aeries of papers by Haff (1977, 1979a, 1979b, 1980). Assuming an Wishart

conjugate prior for I-', I- - Wp(n,C-'/r), n' , p, Y N 0, C p.d., which

results in the Wishart posterior for I-', I-'S Wp(n + n', (S + - C)-'), it

turns out that for most loss functions in (1.1) and (1.2), the estimator

minimizing the Bayesian expected loss is of the form . = a(S + -r C) for some

constant a , 0. An empirical Bayes estimator is then obtiined by pretending

that -7 is unknown and suitably estimating it using the marginal density of S

which is proportional to I P[sl(n-P)/2 IS + . Cl- (n+n )/2. Quite generally,

for Pstimating , estimators of the form

(3.1) = a(S + ut(u)I }

are proposed where for simplicity, C is taken as identity, a is a positive

constant, u is an average eigen value of S, and t(u) is nonnegative, bounded
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and nonincreasing. On the other hand, for estimating the precision matrix

-', estimators of the form

(3.2) i- = b{S-' + v t(v)I }

are proposed where b N 0 is a constant, v is an average eigen value of S-',

and t(v) is nonnegative, bounded and nonincreasing. In applications,

depending on the loss function, u(v) maybe the arithmetic, geometric or

harmonic mean of the eigen values of S(S-'). By (repeatedly) applying the

extremely powerful Wishart Identity (Stein (1975), Haff (1979b)), Haff was able

to construct estimators of the forms given in (3.1) and (3.2) better than

C optS and d optS-' for all the loss functions in (1.1) and (1.2) respectively

(except for the loss L 3 (') in (1.2) which is new). To get a flavor of Haff-type

improved estimators, we mention below a few results. Note that the loss

function L,(') in (1.1) or (1.2) is a special case of corresponding L,(') when Q

is taken as the identity matrix. We denote by j(H) and j*1(H) the improved

estimators due to Haff when the loss function is Li(.) in (1.1) and (1.2)

respectively.

(3.3) a{S + u t(U)Ip}, a = (n+p+l)-', u 1/tr(S'),

0 Lt 4 2 (p-l)/(n-p+3), t a constant, dominates c S.

(3.4) i) = a{S + u t(u)l }, a = n', u = 1/tr(S '),

0 z t(u) & 2(p-1)/n, an absolutely continuous and

nonincreasing function, dominates c3 S. (If t is chosen as

a constant, the optimal value of t is (p-l)/h)

(3.5) ) {S + u t(u)I ), u = ISI1 / p , t(u) satisfying

(i) (4q*/pn 2 )U t'(u) + 2q*[a - (pn - 2)/pn 2 ]t(u) + a2 t(u) 6 0

(ii) u t (u) + 2t (u) & 0

pheredominates/where q* p(q dominates a S, whatever Q.
I ii I i

(If t is chosen as a constant, 0 Lt A 2q*[(pn-2)/pn 2-a]/a2

will do.]
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Romark 3.1. The result for the loss function L,(') in (1.1) is obtained by

putting Q = Ip i.e., q* = 1 in (3.5). In this case a is usually taken as n - 1.

There are, of course, simpler improved estimators (improvement over n- S) for

this loss function. Perlman (1972) proved that 6 n-'S dominates n-'S for any

fl, (np-2)/(np+2) i P z 1. Such a simple dominance result holds for the loss

function L,(-) in (1.1) as well. It is proved in Haff (1979b) that a S dominates

n-S for any a, (n-1)/(n(n+l)) A a z n - ', whatever be Q. However, unlike for

the estimator in (3.5), the amount of risk improvement for these simple

estimators is marginal.

Remark 3.2. The identity matrix Ip in (3.3) and (3.4) can be replaced by any

p.d. matrix C in which case u need be redefined as u = 1/(trS-'C).

(3.6) 2 b{S-' + vt(v)Ip}, b = (n-p-3)(n-p)/(n-1),

v = 1/tr(S), 0 z t(v) ' 2(p-1)/(n-p)

and t'(v) 6 0, dominates d2S
-'.

(3.7) 4 ,(H) = b{S-' + vt(v)Ip}, v = S - '/P , t(v) satisfying

f(4/p)[vt'(v) + t(v)] + 2b*t(v))q*

+ bt2 (v) 0 0, where b* b - (n-p-i),
q* = ( q i /P /

P q )'P~q

dominates b S - , whatever Q.

Remark 3.3. The result for the loss function L1 () in (1.2) is obtained from

(3.7) by putting Q = Ip i.e., q* = 1. In this case b is usually taken as

(n-p-I). Again, for this loss function also, there are simpler improved

estimators. Haff (1977) showed that for any b, n-p-3 6 b z n-p-i, b S - '

dominates (n-p-I)S - '. However, the amount of risk improvement is marginal.

Reniurh 3.4. For the loss function 1,.(') in (1.2), Haff (1979a) obtained another

class of more improved estimators of X-. This is not discussed here.
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Remark 3.5. So far no Haff-type improved estimator is available which

dominates eoptISI for estimating the generalized variance W XI under the loss

functions in (1.3). Also, no Haff-type dominance result is known for the loss

function L 3 (') in (1.2) which improves over d 3 S-' for estimating -'.

Dominance results for these problems are presented in the next section.

4. Stein's testimators.

The methods described in Sections 2 and 3 above for improving over the

best affine equivariant estimators for the loss functions in (1.1) and (1.2) are

based on different functions of S, but ignoring X all the time. Clearly these

methods do not work when p = 1. This is because for estimating the variance

a 
2 of a normal population with unknown mean p, if the sample mean is ignored,

the best multiple of the sample variance is admissible under both entropy loss

and squared error loss. Stein (1964) came up with an ingenius idea to use

the sample mean along with the sample variance in order to obtain an

improved estimator of a'2 . For the squared error loss, Stein's improved
n n

estimator has the form ;2 = min[(n+l)-l (yi-7)2 , (n+2)-' E (yi-po)2] where
I I

p. is any fixed constant. Such an estimator is also called a testimator because

of its obvious interpretation as the result of a suitable test procedure.

Recently, Stein's (1964) technique has been successfully generalized in

the multivariate case to deal with all the loss functions in (1.3) and the

entropy losses in (1.1) and (1.2). We now have testimators which are better

than eoptlSl for estimating IW, than c 3 S for estimating E when the loss is

L 3 (') in (1.1), and than d 3 S - 1 for estimating 1-1 when the loss is L 3 (') in

(1.2). See Sinha (1976), Sinha and Ghosh (1986), and also Shorrock arid Zidek

(1976). However, simulation results show that the amount of risk improvement

is marginal in most cases except when the loss is L3 (') in (1.2). A brief

description of these testimators is given below. We use the notation X, S as

given in the Introduction.

For estimating WXI under the loss function L,(') or L 2 (') or L 3 (') in (1.3),

( n ) Is + XX' I,
the testimator better than euIsl is given by W1 =mint (n+k)!
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np) 1,. Under the loss functions L,(') and Ls(') in (1.3), the improved

testimators are respectively given by I., min{(n-p4 k! Is + XX'I,
(0-4) and =in( (n-p-2+k)! IS + XX'I, (n-p-2)! IS. On the
(n-4)I (n-2+l)! (n-2)!

other hand, for estimating I when the loss is L,(') in (1.1), the testimator -

(S + XX')/(n+k) if ),max(X'S-'X) ' k/n, = S/n otherwise, dominates the best

affine invariant estimator S/n. For the other loss function L3 (') in (1.2), the

improved testimator i-1 = (n-p-l+k)(S + XX') - l if Xmax(X'S-X) & k/(n-p-1), =

(n-p-1)S - ' otherwise, dominates d 3 S- ' for estimating 1-1. Here Xmax() stands

for the largest eigen value of (').

A general procedure to obtain improved testimators is to consider

estimators equivariant under a nonnormal subgroup H of the full affine group

G. Typically, the group G acts on (X,S) and (Q,J) as X -* AX + B, ( 4 At + B,

S -+ ASA', 1 4 AEA' where A:p x p is nonsingular and B:p x k is any matrix.

Here t:p x k -- (C,...,k). The subgroup H is obtained from G by putting B -

0. It turns out that estimators of I equivariant under H are of the form -

W*W' where S = WW', W:p x p is nonsingular, and -f n(UU'):p x p with U -

W-'X. For a specified loss function, the best choice of the function *(-)

usually involves the unknown parameters C and I besides being

computationally intractable. This is also the case for estimating I and II

for which estimators of the form t- = WI-'*-'W-' and If = ISIl*(X'S-'X)

respectively are considered where * in the second case is a scalar. However,

for most problems, an upper bound of the optimum #', say @o, is available.

Because of the convex nature of the loss functions, it then follows that given

any estimator with a specified *, putting ; = min(V'o,#*) results in

improvement of risk. When Y1t and o are matrices, * is defined as ; = *o if

* *, =  * otherwise, where *o A Y means YA - *o is n.n.d. This is the

basis of derivation of all the testimators discussed in this section.

Remark 4.1. It is interesting to observe that the testimators of £, £- of I£I
defined above are based on different test statistics. For I and £-, a test

based on the maximum root of X'S-IX is used, while for III it is the likelihood

ratio test. in all the cases, the underlying null hypothesis is C = 0.
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Remark 4.2. Sequential testimators of Z, 1-1 and 1I1, based on suitable tests

of parts of f, all of which dominate the corresponding best affine equivariant

estimators are also available. See Sinha (1976) and Sinha and Ghosh (1986) for

detail.

5. Open Problems

The following is a list of the open problems in the area discussed in the

paper.

(a) It will be interesting to develop Haff-type improved estimators for

estimating the precision matrix F- under the loss function L 3 (') in

(1.2).

(b) For estimating the generalized variance IxI under the loss functions

in (1.3), so far no Haff-type improved estimator is available. Is it

true that the estimators eoptlS I are admissible when X is ignored?

A partial answer is available in Das Gupta (1982).

(c) So far, Stein's testimators are available only for the loss functions

LW() in (1.1) and (1.2). What happens for other loss functions?
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